弧度公式如下:
1、圆弧长公式:弧长=nπr/180,在这里n就是角度数,即圆心角n所对应的弧长。但如果我们利用弧度的话,以上的式子将会变得更简单:(注意,弧度有正负之分)l=|α|r,即α的大小与半径之积。
2、扇形面积公式:S=|α|r^2/2(二分之一倍的α角的大小,与半径的平方之积,从中我们可以看出,当|α|=2π,即周角时,公式变成了S=πr^2,圆面积的公式)。
扩展资料
弧度制,数学术语,指用弧长与半径之比度量对应圆心角角度的方式,即|弧度|=弧长÷半径。用符号rad表示,读作弧度。等于半径长的圆弧所对的圆心角叫做1弧度的角。由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。
角度以弧度给出时,通常不写弧度单位。弧度制的精髓就在于统一了度量弧与角的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。
意义
1、使进位制统一。
在古巴比伦以及古希腊时期,数学家在研究天文学问题时,普遍习惯使用60进制对角进行度量,为了进位制的统一,也用60进制度量弦长和弧长。此时,角度制满足了这种需求。而随着历史的发展,10进制取代了60进制成为了度量长度的主要进位制。
为了保持进位制的统一,自然地也将角的进位制换成10进制。弧度制满足了这一需求,而且可以与角度制进行一一对应的换算,与原有数学系统相容.这样,在查阅三角函数表时就可以看到用统一进位制表示的数,便于数与数之间的对比,提高解决问题的效率。
2、简化微积分创立后公式的计算。
弧度制大约直到18世纪才被提出来,它的提出是受到微积分等近代数学发展的推动的。在弧度制下,与三角函数有关的一些公式在形式上均比角度制下有很大的简化。正是因为这样的优越性,弧度制才逐渐被数学界普遍接受和广泛使用。
本文来自作者[殇韵]投稿,不代表秒搜号立场,如若转载,请注明出处:http://www.ms80.net/ms/376.html
评论列表(4条)
我是秒搜号的签约作者“殇韵”!
希望本篇文章《弧度公式》能对你有所帮助!
本站[秒搜号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:弧度公式如下:1、圆弧长公式:弧长=nπr/180,在这里n就是角度数,即圆心角n所对应的弧长。但如果我们利用弧度的话,以上的式子将会变得更简单:(注意,弧度有正负之分)l=|...